Linear homobimetallic palladium complexes with end-capped SC(O)Me units

Heinrich Lang ${ }^{\text {a,* }}$, Katrin Döring ${ }^{\text {a }}$, Deeb Taher ${ }^{\text {b }}$, Uwe Siegert ${ }^{\text {a }}$, Bernhard Walfort ${ }^{\text {a }}$, Tobias Rüffer ${ }^{\text {a }}$, Rudolf Holze ${ }^{\text {c }}$
${ }^{\text {a }}$ Technische Universität Chemnitz, Fakultät für Naturwissenschaften, Institut für Chemie, Lehrstuhl für Anorganische Chemie, Straße der Nationen 62, 09111 Chemnitz, Germany
${ }^{\mathrm{b}}$ Tafila Technical University, Department of Chemistry, Tafila, At Tafila 66110, Jordan
${ }^{\text {c }}$ Technische Universität Chemnitz, Institut für Chemie, AG Elektrochemie, 09111 Chemnitz, Germany

A R T I C L E I N F O

Article history:

Received 18 April 2008
Received in revised form 16 September 2008
Accepted 22 September 2008
Available online 27 September 2008

Keywords:

Palladium
Thiol
Nitrogen Lewis-bases
Oxidative addition
Cyclic voltammetry

Abstract

Rigid-rod structured homobimetallic palladium complexes of type [\{trans- $\left(\mathrm{Me}(\mathrm{O}) \mathrm{CS}-4-\mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}\right.$ $\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\right\}_{2}\left(\mu-\mathrm{N}^{\wedge} \mathrm{N}\right)\right](\mathrm{OTf})_{2} \quad\left(\mathbf{8 a}, \quad \mu-\mathrm{N}^{\wedge} \mathrm{N}=4,4^{\prime}\right.$-bipyridine, bpy; $\quad \mathbf{8 b}, \quad \mu-\mathrm{N}^{\wedge} \mathrm{N}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{N}-\mathrm{N}=$ $\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} ; 8 \mathbf{8 c}, \mu-\mathrm{N}^{\wedge} \mathrm{N}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} ; \mathbf{8 d}, \mu-\mathrm{N}^{\wedge} \mathrm{N}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}=\mathrm{CH}-$ $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$) were synthesized by the reaction of trans-[($\left.\left.\mathrm{Me}(\mathrm{O}) \mathrm{CS}-4-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\right](\mathrm{OTf})(6)$ with 0.5 equivalents of $\mathrm{N}^{\wedge} \mathrm{N}$ (7a, $\mathrm{N}^{\wedge} \mathrm{N}=\mathrm{bpy} ; 7 \mathbf{b}, \mathrm{~N}^{\cap} \mathrm{N}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{N}-\mathrm{N}=\mathrm{CH}_{-} \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} ; 7 \mathbf{7}, \mathrm{~N}^{\wedge} \mathrm{N}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-$ $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$; 7d, $\mathrm{N}^{\cap} \mathrm{N}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$) in high yield. Complex 6 was accessible by the subsequent reaction of $\mathrm{I}-4-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4^{\prime}-\mathrm{SC}(\mathrm{O}) \mathrm{Me}$ (2) with [$\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}$] (3) to produce trans-[(I)(Me(O)CS-4-C6 $\left.\left.\mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\right](4)$ which further reacted with $\operatorname{AgOTf}(5)$ to give 6. The structures of $\mathbf{4}$ and $\mathbf{8 c}$ in the solid state are reported. Most characteristic for these systems is the square-planer coordination geometry of palladium with trans-positioned PPh_{3} groups. This automatically positions the iodo ligand and the $\mathrm{Me}(\mathrm{O}) \mathrm{CS}-4-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$ unit (complex 4) or the nitrogen donor atoms of the $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ connectivity and the thio-acetyl group $\mathrm{Me}(\mathrm{O}) \mathrm{CS}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$ (complex 8c) trans to each other. In $\mathbf{8 c}$ a Pd-Pd separation of $20.156 \AA$ is typical.

The electrochemical redox behavior of $\mathbf{2 , 4}$ and $\mathbf{8}$ is discussed. © 2008 Elsevier B.V. All rights reserved.

1. Introduction

There is a wide interest in the synthesis of one-dimensional organic and organometallic compounds because they might be of considerable use in, for example, the developing field of molecular electronics [1-4], as conducting wires [5] or as single-molecule insulators [6,7]. From literature reports it appeared that the properties of molecular wires strongly depend on the nature of the re-dox-active termini and the appropriate rigid-rod shaped connecting spacers [8]. Among them, conjugated end-capped organic thiols have received a great deal of attention because of their intrinsic semiconductor [5] or insulator properties [6], and of their unique capability to form well-ordered monolayers via self-assembly on gold or other metal surfaces [9]. The use of redox-active organometallic constituents assembled with all-carbon or heteroatomic π-spacers offer fascinating perspectives for the design and realization of rigid-rod structured species and hence, show several advantages over organic ones [10].

Recently, we got interested in the design of transition metal complexes featuring end-capped thiol or thio-acetyl groups and their use as appropriate precursors for self-assembling on gold sur-

[^0]faces [11]. The separation of the metal atoms from each other could, for example, be realized by the different size and length of nitrogen containing Lewis-base connecting units [11].

We here describe the synthesis of $\mathrm{MeC}(0) \mathrm{S}$ end-capped linear homobimetallic palladium complexes in which the metal atoms are bridged by organic nitrogen containing units of different size. We chose palladium as metal centers because of their ability to form stable metal-carbon and metal-nitrogen bonds and also similar complexes are known, i.e. trans-[(C6 $\left.\mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{Me}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}$ (X)Pd] ($\mathrm{X}=$ halide, OTf) for comparison [12]. Cyclovoltammetric studies of the newly prepared systems are reported as well.

2. Results and discussion

The synthesis protocol developed to prepare the homobimetallic rigid-rod structured palladium complexes [\{trans-($\mathrm{MeC}(\mathrm{O}) \mathrm{S}-4-$ $\left.\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\right\}_{2}\left(\mu-\mathrm{N}^{\wedge} \mathrm{N}\right)\right](\mathrm{OTf})_{2}\left(\mathbf{8 a}, \mu-\mathrm{N}^{\wedge} \mathrm{N}=4,4^{\prime}\right.$-bipyridine (bpy); 8b, $\quad \mu-\mathrm{N}^{\wedge} \mathrm{N}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{N}-\mathrm{N}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} ; \quad \mathbf{8 c}, \quad \mu-\mathrm{N}^{\wedge} \mathrm{N}=$ $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} ; \mathbf{8 d}, \mu-\mathrm{N}^{\wedge} \mathrm{N}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{N}-$ $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$) is illustrated in Scheme 1. The therefore necessary thiols $4-\mathrm{I}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4^{\prime}-\mathrm{SC}(\mathrm{O}) \mathrm{Me}(\mathbf{2})$ and trans-[(MeC(O)S-$\left.\left.4-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\right](\mathrm{OTf})$ (6) were synthesized via conventional methods as outlined in Scheme 1.

Scheme 1. Synthesis of 2, 4, 6 and $\mathbf{8 a - 8 d}$ (Table 1).

4-Iodo-4'-thioacetylbiphenyl (2) was accessible by the subsequent reaction of commercially available 4,4'-diiodobiphenyl (1) with ${ }^{t} \mathrm{BuLi}, 1 / 8 \mathrm{~S}_{8}$ and $\mathrm{MeC}(\mathrm{O}) \mathrm{Cl}$ in tetrahydrofuran at low temperature (Scheme 1). After appropriate work-up, thioacetate 2 could be isolated as a colorless solid in 80% yield. Treatment of 2 with a stoichiometric amount of $\left[\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}\right](3)$ in toluene at $25^{\circ} \mathrm{C}$ produced by an oxidative addition of the C - I bond to palladium mononuclear trans-[(I)(MeC(O)S-4- $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\right](4)$ as a stable yellow solid in excellent yield (Scheme 1).

For the preparation of $\mathbf{8 a} \mathbf{- 8 d}$ it was necessary to exchange the iodo ligand in $\mathbf{4}$ for a more labile group. Therefore, molecule $\mathbf{4}$

Table 1
Synthesis of 8a-8d
Compound

[^1]was reacted with silver-tetrafluoroborate and -triflate. However, when $\left[\mathrm{AgBF}_{4}\right]$ was used as a halide abstracting reagent, decomposition of in situ-formed trans-[(MeC(O)S-4-C $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2^{-}}$ $\mathrm{Pd}]\left(\mathrm{BF}_{4}\right)$ occured even at low temperature. In contrast, treatment of $\mathbf{4}$ with equimolar amounts of $\mathrm{AgOTf}(5)\left(\mathrm{TfO}=\right.$ triflate, $\left.\mathrm{OSO}_{2} \mathrm{CF}_{3}\right)$ afforded trans-[(MeC(O)S-4-C $\left.\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\right](\mathrm{OTf})(\mathbf{6})$ in a tol-uene-dichloromethane mixture of ratio $5: 2$ at $25^{\circ} \mathrm{C}$ (Scheme 1). While compound $\mathbf{6}$ could be handled in solution for a short period of time without any decomposition, it appeared that attempts to isolate $\mathbf{6}$ in crystalline form failed. Nevertheless, $\mathbf{6}$ could successfully be converted to the significant more stable homobimetallic complexes $\mathbf{8 a}-\mathbf{8 d}$ by addition of 0.5 equivalents of the Lewis-bases $\mathrm{N}^{\wedge} \mathrm{N}$ (7a, $\mathrm{N}^{\wedge} \mathrm{N}=4,4^{\prime}$-bpy; 7b, $\mathrm{N}^{\wedge} \mathrm{N}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{N}-\mathrm{N}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$; 7c, $\mathrm{N}^{\wedge} \mathrm{N}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} ; 7 \mathrm{~d}, \mathrm{~N}^{\wedge} \mathrm{N}=\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-$ $\mathrm{CH}=\mathrm{N}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{N}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$) (Scheme 1 and Table 1), whereby the labile OTf ligand in $\mathbf{6}$ was replaced by the better σ-donor $/ \pi$-base $\mathrm{N} \wedge$.

Yellow-colored crystals of 8a-8d could be obtained by slow diffusion of n-pentane into a dichloromethane solution containing 8 at room temperature. They are air-, moisture- and temperaturesensitive. Due to their ionic nature, 8a-8d are only soluble in polar organic solvents including tetrahydrofuran and dichloromethane, whereas in acetonitrile, dimethylsulfide and dimethylformamide

Fig. 1. ORTEP diagram (50% probability level) of the molecular structure of 4 with the atom-numbering scheme. One $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ molecule as packing solvent, the hydrogen atoms as well as the disordered atoms O^{\prime} and $\mathrm{C}_{5}{ }^{\prime}$ have been omitted for clarity.

Fig. 2. ORTEP diagram (50\% probability level) of $\mathbf{8 c}$ with the geometry and atom-numbering scheme. The two triflate ions, the hydrogen atoms and the disordered atoms of the phenylenethioacetate unit ($\mathrm{C} 7^{\prime}-\mathrm{C} 14^{\prime}, \mathrm{O} 1^{\prime}, \mathrm{S} 1^{\prime}$) have been omitted for clarity. Selected bond distances and angles are given in Table 3.
they rapidly decompose even at low temperature to give black insoluble materials. On the other hand, solid 8a-8d are stable for months under inert gas atmosphere at $-30^{\circ} \mathrm{C}$.

Compounds 2, 4 and 8a-8d were characterized by elemental analysis, IR and NMR $\left({ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\right)$ spectroscopy. From 4 and $\mathbf{8 c}$ the molecular solid state structures were determined (see below).

The thioacetyl group in $\mathbf{2 , 4} 4$ and $\mathbf{8}$ gives rise to a very characteristic CO stretching vibration at ca. $1700 \mathrm{~cm}^{-1}$ [13a]. This band is, as expected, not significantly influenced, when one goes from $\mathbf{2}$ to $\mathbf{4}$ to $\mathbf{8}$. The triflate ion in $\mathbf{8 a - 8 d}$ shows a distinct $v_{\text {so }}$ absorption at ca. $1265 \mathrm{~cm}^{-1}$ which is in agreement with the non-coordinating character of this group [13]. This observation resembles to data found for other transition metal complexes, i.e. $\left\{[(\mathrm{dppp}) \mathrm{Pd}]\left[\mathrm{C}_{6} \mathrm{H}_{4}{ }^{-}\right.\right.$ $\left.\left.1,4-(\mathrm{C} \equiv \mathrm{N})_{2}\right]_{2}(\mathrm{OTf})_{2}\right\}_{4}\left(1280 \mathrm{~cm}^{-1}\right)[13]$.

The ${ }^{1} \mathrm{H}$ NMR spectra of all complexes exhibit well-resolved resonance signals with the expected coupling pattern for each of the organic groups present $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{Me}, \mathrm{C}_{6} \mathrm{H}_{5}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right.$, $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{N}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}, \mathrm{C}_{6} \mathrm{H}_{4}$) (Section 3).

We were not able to obtain appropriate ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra for $\mathbf{8 a - 8 d}$, since these systems are less soluble in common organic solvents (vide supra). In addition, signal overlapping does not unequivocally allow assigning the appropriate resonance signals between 120 and 150 ppm in the ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of 2 and

Table 2
Selected bond distances (\AA), bond angels $\left({ }^{\circ}\right)$, and torsion angels $\left({ }^{\circ}\right)$ for $\mathbf{4}^{\text {a }}$

Bond distances	Bond angles	Torsion angles			
Pd1-C37	$2.023(6)$	C37-Pd1-P2	$86.0(2)$	I1-Pd1-C37-C38	$-162.5(9)$
Pd1-P2	$2.337(2)$	C37-Pd1-P1	$88.0(2)$	C41-C40-C43-C44	$-140.6(7)$
Pd1-P1	$2.350(2)$	P2-Pd1-P1	$172.87(6)$	C41-C40-C43-C48	$36.7(9)$
Pd1-I1	$2.6764(8)$	C37-Pd1-I1	$171.7(2)$	C46-S1-C49-C50	$174(2)$
C46-S1	$1.780(7)$	P2-Pd1-I1	$91.86(5)$	S1-C46-C47-C48	$174.8(7)$
C40-C43	$1.484(9)$	P1-Pd1-I1	$93.53(5)$	C46-S1-C49-O1	$-13(2)$
S1-C49	$1.709(9)$	C49-S1-C46	$103.0(4)$	C45-C46-S1-C49	$-100.7(7)$

${ }^{\text {a }}$ The estimated standard deviations of the last significant digit(s) are shown in parentheses.

Table 3
Selected bond distances (\AA), bond angels $\left({ }^{\circ}\right)$, and torsion angels $\left({ }^{\circ}\right)$ for $\mathbf{8 c} \mathbf{c}^{\mathrm{a}}$

Bond distances		Bond angles		Torsion angles	
Pd1-C1	$2.040(9)$	C1-Pd1-N1	$177.7(4)$	C53-C56-C57-C58	$-174.6(13)$
Pd1-P2	$2.350(3)$	C1-Pd1-P1	$89.0(3)$	C3-C4-C7-C8	$146.5(15)$
Pd1-P1	$2.339(3)$	P2-Pd1-P1	$177.78(9)$	C10-S1-C13-O1	$5.4(18)$
Pd1-N1	$2.153(7)$	N1-Pd1-P1	$90.7(2)$	C51-N1-Pd1-C1	$160(8)$
C10-S1	$1.75(2)$	C53-C56-C57	$131.2(18)$		
S1-C13	$1.56(2)$	C56-C57-C58	$130(2)$		

[^2]4. However, for the acetyl group two very distinct resonances could be observed at ca. $190(\mathrm{CO})$ and $30\left(\mathrm{CH}_{3}\right) \mathrm{ppm}$, respectively.

The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of 4 in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ consists of a sharp singlet at 22 ppm for the $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2}$ unit. Compared with free $\mathrm{Ph}_{3} \mathrm{P}$ [14] this signal is shifted to lower field, which is representative for the coordination of phosphanes to transition metal atoms. In addition, the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra of $\mathbf{8 a}-\mathbf{8 d}$ are coherent with the formation of single, highly symmetrical species, since only one sharp singlet appeared at ca. $20 \mathrm{ppm}, 2 \mathrm{ppm}$ up-field shifted relative to 4.

Further structural informations for $\mathbf{4}$ and $\mathbf{8}$ were obtained by single X-ray structure determination. Slow vapor diffusion of n pentane into a dichloromethane solution containing 4 or 8 cc at $25^{\circ} \mathrm{C}$ led to the formation of yellow crystals of $\mathbf{4}$ and $\mathbf{8 c}$, respectively. The molecular structure of 4 is depicted in Fig. 1, while Fig. 2 contains homobimetallic 8c. Selected bond distances (\AA) and angles $\left(^{\circ}\right)$ are listed in Table $2(\mathbf{4})$ and Table 3 (8c). Crystallographic and structural refinement data are summarized in Table 5 (Section 3).

Complex $\mathbf{4}$ crystallizes in the monoclinic space group $C 2 / c$. The coordination geometry around Pd1 is planar caused by the two

Table 4
Peak potentials and formal (redox) potentials of $\mathbf{2}, \mathbf{4}$ and $\mathbf{8 a} \mathbf{- 8 d}$ (irr. designates a current peak without a corresponding reverse peak)

	$E_{\mathrm{p}, \mathrm{ox}}$ (Pd(II)) Pd(IV))	$E_{\mathrm{p}, \mathrm{ox}}(\mathrm{S}-$ $\mathrm{C}(\mathrm{O}) \mathrm{Me})$	$\begin{aligned} & E_{\mathrm{p}, \mathrm{ox}} \\ & (\mathrm{C}-\mathrm{I}) \end{aligned}$	$E_{\text {p,red }}$	$E_{0}\left(\mu-\mathrm{N}^{\wedge} \mathrm{N}\right)$	$\begin{aligned} & E_{0}\left(\mu-N^{\wedge} \mathrm{N}\right)^{\mathrm{a}} \\ & \text { ligand } 7 \mathbf{7 a - 7 d} \\ & {[30]} \\ & \hline \end{aligned}$
2	-	$\begin{aligned} & 1.26 \mathrm{~V} \\ & \text { (irr.) } \end{aligned}$	1.66 V	$-1.09 \mathrm{~V}$	-	-
4	$\begin{aligned} & 0.81 \mathrm{~V} \\ & \text { (irr.) } \end{aligned}$	$\begin{aligned} & 1.48 \mathrm{~V} \\ & \text { (irr.) } \end{aligned}$	-	-	-	-
8 a	$\begin{aligned} & 0.87 \mathrm{~V} \\ & \text { (irr.) } \end{aligned}$	$\begin{aligned} & 1.09 \mathrm{~V} \\ & \text { (irr.) } \end{aligned}$	-	-	-1.75 V (irr.)	$\begin{aligned} & -2.51 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.54 \mathrm{~V}\right) \\ & -3.08 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.54 \mathrm{~V}\right) \end{aligned}$
8b	$\begin{aligned} & 0.82 \mathrm{~V} \\ & \text { (irr.) } \end{aligned}$	$\begin{aligned} & 1.06 \mathrm{~V} \\ & \text { (irr.) } \end{aligned}$	-	-	$\begin{aligned} & -1.50 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.11 \mathrm{~V}\right) \\ & -1.67 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.10 \mathrm{~V}\right) \\ & -1.90 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.13 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & -1.92 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.23 \mathrm{~V}\right) \\ & -2.30 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.23 \mathrm{~V}\right) \end{aligned}$
8c	$\begin{aligned} & 0.74 \mathrm{~V} \\ & \text { (irr.) } \end{aligned}$	$\begin{aligned} & 1.07 \mathrm{~V} \\ & \text { (irr.) } \end{aligned}$	-	-	$\begin{aligned} & -1.50 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.06 \mathrm{~V}\right) \\ & -1.70 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.06 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & -2.21 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.35 \mathrm{~V}\right) \\ & -2.40 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.33 \mathrm{~V}\right) \end{aligned}$
8d	$\begin{aligned} & 0.87 \mathrm{~V} \\ & \text { (irr.) } \end{aligned}$	$\begin{aligned} & 1.16 \mathrm{~V} \\ & \text { (irr.) } \end{aligned}$	-	-	$\begin{aligned} & -1.10 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.29 \mathrm{~V}\right) \\ & -1.42 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.15 \mathrm{~V}\right) \\ & -1.71 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.16 \mathrm{~V}\right) \end{aligned}$	$\begin{aligned} & -2.00 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.31 \mathrm{~V}\right) \\ & -2.23 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.31 \mathrm{~V}\right) \\ & -2.48 \mathrm{~V} \\ & \left(\Delta E_{\mathrm{p}}=0.27 \mathrm{~V}\right) \end{aligned}$

[^3]Table 5
Experimental data for the X-ray diffraction studies of $\mathbf{4}$ and $\mathbf{8 c}$

	4	8c
Formula	$\mathrm{C}_{50.5} \mathrm{H}_{42} \mathrm{ClIOP}_{2} \mathrm{PdS}$	$\mathrm{C}_{61} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{P}_{2} \mathrm{PdS}_{2}$
Formula weight	1027.59	1149.47
Space group	C2/c	$P \overline{1}$
Crystal system	Monoclinic	Triclinic
Z	8	2
$a(\AA)$	21.758(4)	10.8177(10)
b (\AA)	10.572(3)	11.0865(11)
$c(A)$	39.496(10)	24.632(3)
$\alpha\left({ }^{\circ}\right)$	90	87.008(2)
$\beta\left({ }^{\circ}\right)$	99.224(6)	89.541(2)
$\gamma\left({ }^{\circ}\right)$	90	79.414(2)
Volume (\AA^{3})	8967(4)	2899.5(5)
$d_{\text {calc }}\left(\mathrm{g} \mathrm{cm}^{-1}\right)$	1.522	1.316
Temperature (K)	298(2)	298(2)
$F(000)$	4120	1178
μ (Mo K α) (mm^{-1})	1.317	0.502
Crystal size (mm)	$0.4 \times 0.3 \times 0.3$	$0.4 \times 0.2 \times 0.1$
$\theta^{\min }, \theta^{\text {max }}\left({ }^{\circ}\right.$)	1.90, 25.69	1.66, 25.34
	-26, 0, 0; 26, 12, 48	-13, -13, -13; 13, 0, 29
No. of total, unique reflections	19425, 8574	23711, 10323
$R_{\text {(int) }}$	0.0593	0.0655
$R_{1}[I>2 \sigma(I)]$, all $^{\text {a }}$	0.0610, 0.1024	0.1036, 0.1655
$w R_{2}[I>2 \sigma(I)]$, all $^{\text {b }}$	0.1354, 0.1516	0.2199, 0.2515
S	1.015	1.139
Residual density (e/ $/ \AA^{-3}$)	-0.868, 0.825	-1.275, 1.280

$$
\begin{aligned}
& { }^{\mathrm{a}} R_{1}=\frac{\sum\left\|F_{\mathrm{o}}|-| F_{\mathrm{c}}\right\|}{\sum\left|F_{\mathrm{o}}\right|} \\
& { }^{\mathrm{b}} w R_{2}=\sqrt{\frac{\sum w\left(F_{o}^{2}-F_{\mathrm{c}}^{2}\right)^{2}}{\sum w\left(F_{o}^{2}\right)^{2}}} \text { with } w=\frac{1}{\sigma^{2}\left(F_{0}^{2}\right)+\left(g_{1} P\right)^{2}+g_{2} P} ; P=\frac{\left(\max \left(F_{0}^{2}, 0\right)+2 F_{\mathrm{c}}^{2}\right)}{3}
\end{aligned}
$$

trans-positioned phosphorus atoms P1 and P2, the σ-bonded iodide I1, and C 37 of the $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{Me}$ unit (Fig. 1) (r.m.s. deviation of Pd1-P1-P2-I1-C37 is $0.0486 \AA$). The palla-dium-bonded phenylene group of the biphenylene unit is thereby nearly perpendicular oriented to the transition metal coordination plane (93.1°), while the second $\mathrm{C}_{6} \mathrm{H}_{4}$ entity forms an interplanar angle of 37.2°. The Pd1-P1 and Pd1-P2 separations with 2.350 (2) and $2.337(2) \AA$ are in the range expected for trans-positioned triphenyl phosphine ligands (2.319-2.360 A) [15-17]. Both, the Pd1-I1 (2.6764 (8) \AA) and the Pd1-C37 distance (2.023(6) \AA) (Table 2) agree well with those separations reported for other
trans-configurated iodo-palladium-carbon units in which likewise the $\mathrm{Pd}-\mathrm{I}$ bond is trans to a $\mathrm{C}-\mathrm{sp}^{2}$ donor atom of high trans-influence [15-17].

The structure of $\mathbf{8 c}$ in the solid state confirms the presence of a homobimetallic rigid-rod $\quad\left[\left\{\right.\right.$ trans $-\left(\mathrm{MeC}(\mathrm{O}) \mathrm{S}-4-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right)$ $\left.\left.\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}\right\}_{2}\left(\mu-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{C}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)\right]^{2+}$ system and two non-coordinated triflate ions, while the asymmetric unit of 8c contains half of the cationic unit and one non-coordinated triflate entity. The second part of the molecule is generated by an inversion center in the center of the phenylene group of the connecting unit 7c. The organometallic dicationic part consists of two planar $\left.\mathrm{MeC}(\mathrm{O}) \mathrm{S}-4-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}\right)\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Pd}$ moieties and the μ bridging $\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{C}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$ entity (r.m.s. deviation of Pd1-P1-P2-N1-C1 is $0.0214 \AA$) (Fig. 2).

The interplanar angle between the two planes defined by the phenylene groups of the $\mathrm{MeC}(\mathrm{O}) \mathrm{S}-4-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$ moieties is 34.7° which is characteristic for biaryls (for example, the interplanar angle in biphenyl is close to 0° [18a]). In contrast, the biphenyl moiety in $\mathbf{8 c}$ is planar (with significant thermal libration even at low temperature) [18b]. Crystallographic interplanar angles for para-nitro-, [18c] -dinitro- [18d], and -dimethylbiphenyl [18e] derivatives exhibit values between 30° and 40°, whereas para-dihydroxybiphenyl is planar in the solid state [18f,18g]. The palladiumnitrogen, palladium-phosphorus and palladium-carbon separations are in the typical range as observed for other palladium organometallic complexes [15,17].

Complex 8c shows intra- and intermolecular $\pi-\pi$ interactions resulting from the aryl ligands ($\mathrm{N} 1, \mathrm{C} 51-\mathrm{C} 55$ and $\mathrm{C} 15-\mathrm{C} 20$) forming a 2-D layer in the solid state (Fig. 3). As it can been seen from Fig. 3, five aryl rings interact with each other in a sandwich-type arrangement [18h]. Further details are presented in Fig. 4. The arrangement of these five aryl rings is thereby centrosymmetric, with a inversion center in the middle of the central aryl ring C58B-C60BA. The sandwich-type interaction is truncated after the fifth aryl ring at the expense of the formation of T-shaped $\pi-\pi$ interactions [18h], as depicted in Fig. 5 together with geometrical details. The situation is further complicated with respect to the disorder of the $\mathrm{MeC}(\mathrm{O}) \mathrm{S}-4-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$ entity, therefore Fig. 5 includes only one $\mathrm{MeC}(\mathrm{O}) \mathrm{S}-4-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$ moiety. Between adjacent 2 -D layers no further $\pi-\pi$ interactions are present.

Fig. 3. Part of a 2-D layer of $\mathbf{8 c}$ illustrating the sandwich-type and T-shaped $\pi-\pi$ interactions between adjacent molecules. Hydrogen and oxygen atoms, and the triflate anions have been obmitted for clarity.

In order to gain a first insight into the electrochemical behavior of the newly synthesized molecules, compounds 2, 4 and $\mathbf{8 a}-\mathbf{8 d}$ have been subjected to cyclic voltammetry (CV) [19]. Of particular importance is the behavior of molecule 2, proper understanding of its electrochemistry provides the basis for the assignment of current peaks in 4 and $8 \mathbf{a}-8 d$ containing 2 as a building block.

A CV of 2 (Fig. 6) in dichloromethane shows two anodic oxidation waves at $E_{\mathrm{p}, \mathrm{ox}}=1.26 \mathrm{~V}$ and $E_{\mathrm{p}, \mathrm{ox}}=1.66 \mathrm{~V}$, caused by oxidation of the thio-acetyl unit and the $\mathrm{C}-\mathrm{I}$ unit, respectively, as reported previously for molecule $\mathrm{MeC}(\mathrm{O}) \mathrm{S}-4-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{SC}(\mathrm{O}) \mathrm{Me}$ at $E_{\mathrm{p}, \mathrm{ox}}=1.16 \mathrm{~V}$ and 1.65 V [20].

Oxidation of the thioacetyl-unit has been observed previously in the range $E_{\mathrm{p}, \mathrm{ox}}=1.3-1.45 \mathrm{~V}$ with a selection of similar molecules [21-23], a discussion of the suggested reaction mechanism can be found in Ref. [21]. Oxidation of the iodo substituent has been reported for the structurally closely related 4,4'-diiodobiphenyl [20]. Two current peaks were observed at $E_{\mathrm{p}, \mathrm{ox}}=1.65 \mathrm{~V}$ and at $E_{\mathrm{p}, \mathrm{ox}}=1.76 \mathrm{~V}$. This spacing implies intramolecular communication resulting in the measured shift of the second oxidation peak to more positive values. The peak potential found in the present study of the "mixed" molecule 2 falls well between the peak potentials observed before. The absence of a significant shift of the oxidation potential implies that the preceding oxidation of the thioacetyl unit has no influence via intramolecular communication.

Fig. 6. Cyclic voltammogram of $\mathbf{2}$ in a solution of $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]\left(c=0.1 \mathrm{~mol} \mathrm{dm}^{-1}\right)$ in dichloromethane, $25^{\circ} \mathrm{C}$, argon, scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$, thin line: blank supporting electrolyte solution only.

Scanning from the positive potential limit into the negative direction yields a cathodic peak at $E_{\text {p,red }}=-1.09 \mathrm{~V}$ persisting in multicycle measurements. This peak does not appear, when the

Fig. 4. Geometrical details of the sandwich-type $\pi-\pi$ interactions of five aryl rings of $\mathbf{8 c}$ within a 2-D layer. Label "A" refers to atoms of a first, labels " B " and "BA" to atoms of a second and label " C " to atoms of a third molecule of $\mathbf{8 c}$, with d giving the center-to-center distances as well as the shortest and longest $\mathrm{C}-\mathrm{C}$ distance of adjacent aryl rings.

Fig. 5. Geometrical details of the T-shaped $\pi-\pi$ interaction [14h] between aryl rings of $\mathbf{8 c}$ within a 2-D layer. Label "A" refers to atoms of a second molecule of $\mathbf{8 c}$, with d giving the center-to-center distances.

Fig. 7. Cyclic voltammogram of $\mathbf{4}$ in a solution of $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right]\left(c=0.1 \mathrm{~mol} \mathrm{dm}^{-1}\right)$ in dichloromethane, $25^{\circ} \mathrm{C}$, argon, scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$; thin line: blank supporting electrolyte solution only.
initial scan was performed from the starting potential $E=0.0 \mathrm{~V}$ into the negative going direction. This implies that the reduction peak at $E_{\mathrm{p}, \text { red }}=-1.09 \mathrm{~V}$ (Fig. 6) results from species formed by the oxidation of the $\mathrm{S}-\mathrm{C}(\mathrm{O}) \mathrm{Me}$ or the I entity. The assignment to the direct reduction of the iodo ligand (as stated with $E_{\text {p,red }}=-1.49 \mathrm{~V}$ elsewhere [20]) can be excluded because the peak appears only after a positive going potential excursion. This peak has been observed instead in CV studies of 4-iodo-4'-thioacetylbiphenyl at $E_{\mathrm{p}, \text { red }}=-1.03 \mathrm{~V}$ confirming the lack of association with I reduction. The suggested reduction of electrooxidation products of the thioacetyl unit has been discussed elsewhere in detail [21].

The CV of mononuclear trans-[(I) $\left(\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{Me}\right)\left(\mathrm{PPh}_{3}\right)_{2}$ Pd] (4) (Fig. 7) shows an oxidation current shoulder at $E_{\mathrm{p}, \mathrm{ox}}=0.81 \mathrm{~V}$ which can be assigned to the oxidation of $\operatorname{Pd}(\mathrm{II})$.

Based on evidence reported elsewhere a transition from $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(\mathrm{IV})$ has to be expected because $\mathrm{Pd}(\mathrm{III})$ is unstable $[24,25]$. Oxidation potentials pertaining to this reaction are scant. An oxidation peak observed in a CV study of $\left[\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Hal}_{2} \mathrm{Pd}\right]$ turned out to be caused by the reoxidation of $\operatorname{Pd}(0)$ generated in a negative going potential excursion [26], Campora et al. have reported a current peak in CV s of $\mathrm{Pd}(\mathrm{II})$ complexes in the range from $1.06 \mathrm{~V}>$ $E_{\mathrm{p}, \mathrm{ox}}>1.24 \mathrm{~V}^{1}$ which they assigned to the oxidation of $\mathrm{Pd}(\mathrm{II})$ to Pd(IV) [27].

With trans-[($\left.\left.\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Pd}\right]$ a CV as displayed in Fig. 8 was obtained, the oxidation of $\mathrm{Pd}(\mathrm{II})$ proceeds at $E_{\mathrm{p}, \mathrm{ox}}=1.15 \mathrm{~V}$. The negative going peak at $E_{\text {p,red }}=-1.1 \mathrm{~V}$ may indicate reduction of $\mathrm{Pd}(\mathrm{II})$ to $\mathrm{Pd}(0)$.

The lower oxidation potential observed here can be explained by invoking the higher σ-electron-donating capability of the aryl moiety (and perhaps even the iodo ligand) as compared to the two chloro ligands resulting in a higher charge density at the palladium atom and hence, easier oxidation. The oxidation peak found at $E_{\mathrm{p}, \mathrm{ox}}=1.48 \mathrm{~V}$ is assigned to the oxidation of the $\mathrm{SC}(\mathrm{O})$ Me group, the upshifted value results from a transfer of charge density to the palladium making oxidation more difficult. The absence of a corresponding reduction peak implies a chemical follow-up reaction resulting in species without redox activity in the scanned potential region.

[^4]

Fig. 8. Cyclic voltammogram of trans-[($\left.\left.\mathrm{Ph}_{3} \mathrm{P}\right)_{2} \mathrm{Cl}_{2} \mathrm{Pd}\right]$ (bold line) in a solution of [n $\left.\mathrm{Bu}_{4} \mathrm{~N}\right]\left[\mathrm{PF}_{6}\right] \quad\left(c=0.1 \mathrm{~mol} \mathrm{dm}^{-1}\right)$ in dichloromethane, $25^{\circ} \mathrm{C}$, argon, scan rate $100 \mathrm{mV} \mathrm{s}^{-1}$; thin line: blank supporting electrolyte solution only.

The cyclic voltammograms of $\mathbf{8 a}-\mathbf{8 d}$ display current shoulders at $E_{\mathrm{p}, \mathrm{ox}}=0.87$ and 1.09 for $\mathbf{8 a}, 0.82$ and 1.06 V for $\mathbf{8 b}, 0.74$ and 1.07 V for 8 c and 0.87 and 1.16 V for $\mathbf{8 d}$, respectively (for a complete listing see Table 4). The former peaks can be assigned to the oxidation of palladium(II), the latter to oxidation of the $\mathrm{SC}(\mathrm{O}) \mathrm{Me}$ unit. The palladium oxidation shows a more positive value than with $\mathbf{4}$ indicating that the palladium atoms in $\mathbf{8 a} \mathbf{- 8 d}$ are more difficult to oxidize which can be explained by the π-donor/ acceptor character of the connecting $\mu-\mathrm{N}^{\wedge} \mathrm{N}$ units. A similar behavior was previously reported for related compounds with similar bridging units between ruthenium ions [28]. In addition, complexes 8a-8d show, depending on the nature of the bridging $N^{\wedge} N$ moieties, one to three reduction peaks in the anodic region between -1.10 and -1.75 V . A similar electrochemical behavior was found for $\left[\left(\left(\mathrm{PEt}_{3}\right)_{2}\right)_{4}\left(\mu-4,4^{\prime}-\mathrm{bpy}\right)_{2}(\text { anthracenyl })_{2} \mathrm{Pt}\right]^{4+}[29]$. The ligand reductions in 8a-8d are shifted to substantially less negative potentials in comparison with free 7a-7d (see Table 4) [30]. The differences are consistent with the expected electrostatic stabilization of the negatively charged, reduced forms of the linking units by the coordinated palladium cations [28,31,32].

3. Experimental

General methods. All reactions were carried out in an atmosphere of purified nitrogen (O_{2} traces: CuO catalyst, BASF AG, Ludwigshafen, Germany; $\mathrm{H}_{2} \mathrm{O}$ traces: molecular sieve, $4 \AA$ A, Roth company) using standard Schlenk techniques. Solvents were purified by distillation (n-hexane and dichloromethane: calcium hydride; toluene: sodium; tetrahydrofuran: sodium/benzophenone ketyl). FT-IR spectra were recorded with a Perkin-Elmer FT-IR 1000 spectrometer (KBr). NMR spectra were recorded with a Bruker Advance 250 spectrometer, operating in the Fourier transform mode. ${ }^{1} \mathrm{H}$ NMR spectra were recorded at 250.123 MHz (internal standard, relative to $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta 5.32$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded at 67.890 MHz (internal standard, relative to $\mathrm{CD}_{2} \mathrm{Cl}_{2}, \delta$ 53.50). Chemical shifts are reported in δ units (ppm) downfield from tetramethylsilane with the solvent signal as reference signal. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR were recorded at 101.202 MHz in CDCl_{3} with $\mathrm{P}(\mathrm{OMe})_{3}$ as external standard ($\delta 139.0$, relative to $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}, \delta$ 0.00). Cyclic voltammograms (CVs) were recorded in a dried cell, purged with purified argon at $25^{\circ} \mathrm{C}$. Platinum wires served as working and as counter electrode. A calomel electrode served as reference electrode. For ease of comparison, all potentials are converted using the redox potential of the ferrocene-ferrocenium cou-
ple $\mathrm{FcH} / \mathrm{FcH}^{+} \quad\left(\mathrm{FcH}=\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)_{2} \mathrm{Fe}\right)$ as reference $\left(E_{0}=0.00 \mathrm{~V}\right.$, $\left.\Delta E_{\mathrm{P}}=0.10 \mathrm{~V}\right)[33,34]$. Electrolyte solutions were prepared from freshly distilled tetrahydrofuran and $\left[n-\mathrm{Bu}_{4} \mathrm{~N}\right] \mathrm{PF}_{6}$ (dried in oilpump vacuum at $120^{\circ} \mathrm{C}$). The organometallic complexes were added at $c=1.0 \mathrm{mM}$. Cyclic voltammograms were recorded at a scan rate of $100 \mathrm{mV} \mathrm{s}^{-1}$ using a Radiometer system (VoltaLab 3.1) and a Radiometer Analytical PGZ 100 VoltaLab. Melting points were determined using analytically pure samples, sealed off in nitrogen-purged capillaries on a Gallenkamp MFB 595010 melting point apparatus. Microanalyses were performed by the Organic Department at Chemnitz, Technical University and the Institute of Organic Chemistry at the University of Heidelberg.

4. General remarks

Chemicals were purchased from commercial suppliers and were used as received.

4.1. Synthesis of $\mathbf{2}$ (modified procedure Ref. [35])

4,4'-Diiodobiphenyl (1) (5.00 g, 12.31 mmol) was dissolved in tetrahydrofuran $(300 \mathrm{~mL})$ and t-BuLi $(14.49 \mathrm{~mL}, 24.62 \mathrm{mmol}$, 1.7 M in n-pentane) was drop-wise added during 10 min at $-78^{\circ} \mathrm{C}$. After stirring this reaction solution at this temperature for 10 min , sulfur ($394 \mathrm{mg}, 12.31 \mathrm{mmol}$) dissolved in tetrahydrofuran (75 mL) was drop-wise added and the reaction mixture was allowed to warm to $0^{\circ} \mathrm{C}$ and stirred for 45 min at this temperature. The solution was again cooled to $-78^{\circ} \mathrm{C}$ and acetylchloride ($966 \mathrm{mg}, 13.31 \mathrm{mmol}$) was added in one portion. After warming the reaction solution overnight to $25^{\circ} \mathrm{C}$, water (20 mL) was added and the mixture was extracted with dichloromethane ($3 \times 50 \mathrm{~mL}$). The combined organic layers were dried over magnesium sulfate. All volatiles were removed by rotary evaporation and the residue was purified by chromatography (column size: $20 \times 2.5 \mathrm{~cm}$; Silica gel; n-hexane-dichloromethane (ratio 10:3). Removal of the solvents in oil-pump vacuum gave 2 as a colorless solid. Yield: 3.5 g ($9.88 \mathrm{mmol}, 80 \%$ based on 1).
M.p.: 110-112 ${ }^{\circ} \mathrm{C}$. IR (KBr): 2922 (m), 1904 (w), 1695 (vs) (v_{CO}), 1475 (s), 1378 (m), 1351 (m), 1260 (m), 1121 (s), 1092 (s), 999 (s), 844 (m), 808 (vs), 762 (s), 693 (w), 679 (w), 618 (s), 555 (w), 526 (w), 496 (w) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=2.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.3$ (d, $\left.2 \mathrm{H}, J_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{o} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}\right), 6.5\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}}=8.2 \mathrm{~Hz}\right.$, $\left.{ }^{m} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}\right), 7.1\left(\mathrm{~d}, 2 \mathrm{H}, J_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{m} \mathrm{H}, \mathrm{I}-\mathrm{C}_{6} \mathrm{H}_{4}\right), 7.4(\mathrm{~d}$, $\left.2 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{\circ} \mathrm{H}, \mathrm{I}-\mathrm{C}_{6} \mathrm{H}_{4}\right) \cdot{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=30.2\left(\mathrm{CH}_{3}\right)$, 93.7 (C-I), $127.3\left({ }^{i} \mathrm{C} / \mathrm{C}_{6} \mathrm{H}_{4}\right), 127.6\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 128.9\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 134.9$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 137.9\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 139.64\left({ }^{i} \mathrm{C} / \mathrm{C}_{6} \mathrm{H}_{4}\right), 141.2\left({ }^{i} \mathrm{C} / \mathrm{C}_{6} \mathrm{H}_{4}\right), 194.4$ (CO). HRMS calcd. for $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{IOS}\left(\mathrm{M}^{+}\right) 354.9515$, found 354.965.

4.2. Synthesis of 4

Compound 2 ($405 \mathrm{mg}, 1.14 \mathrm{mmol}$) was dissolved in 50 mL of toluene and one equivalent of $\left[\left(\mathrm{PPh}_{3}\right)_{4} \mathrm{Pd}\right](3)(1.32 \mathrm{~g}, 1.14 \mathrm{mmol})$ was added in a single portion at $25^{\circ} \mathrm{C}$. During 2 h of stirring at this temperature a yellow precipitate formed. All volatiles were removed in oil-pump vacuum and the residue was dissolved in dichloromethane (5 mL). n-Hexane (60 mL) was added, whereby a yellow solid precipitated. The supernatant layer was decanted and the residue was washed twice with n-hexane (20 mL) to gave 4 as a yellow solid. Yield: $0.95 \mathrm{~g}(0.96 \mathrm{mmol}, 85 \%$ based on 2).
M.p.: $154^{\circ} \mathrm{C}$ (dec.). Anal. Calc. for $\mathrm{C}_{50} \mathrm{H}_{41} \mathrm{IOP} 2 \mathrm{PdS}$ (985.20): C, 60.96; H, 4.19; S, 3.25. Found: C, 61.09; H, 4.37; S, 3.87\%. IR (KBr): 3050 (m), 1697 (s) (v_{Co}), 1575 (m), 1477 (s), 1434 (vs), 1401 (m), 1308 (w), 1261 (w), 1185 (w), 1158 (w), 1117 (s), 1095 (sh), 1060 (m), 999 (s), 952 (m), 803 (s), 744 (s), 692 (vs), 618 (s), 519 (vs) cm ${ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=2.4\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 6.4$
(d, $\left.2 \mathrm{H}, \quad J_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{\circ} \mathrm{H}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}\right), 6.5$ (dd, 2 H , $\left.J_{\mathrm{HH}}=8.2 \mathrm{~Hz},{ }^{4} J_{\mathrm{HP}}=3.9 \mathrm{~Hz},{ }^{m} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}\right), 7.2-7.6(\mathrm{~m}$, $34 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}$ and $\left.\mathrm{PPh}_{3}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta=21.7 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta=30.1\left(\mathrm{CH}_{3}\right), 125.2\left({ }^{i} \mathrm{C} / \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 126.3, $127.2\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 127.7\left(\mathrm{pt}, \mathrm{C}_{6} \mathrm{H}_{5}, J_{\mathrm{CP}}=4.9 \mathrm{~Hz}\right), 129.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, 131.9 (pt, $\left.{ }^{i} \mathrm{C} / \mathrm{C}_{6} \mathrm{H}_{5}, J_{\mathrm{CP}}=23.2 \mathrm{~Hz}\right), 134.0\left({ }^{i} \mathrm{C} / \mathrm{C}_{6} \mathrm{H}_{4}\right), 134.5\left(\mathrm{C}_{6} \mathrm{H}_{4}\right)$, 134.9 (pt, $\mathrm{C}_{6} \mathrm{H}_{5}, J_{\mathrm{CP}}=6.4 \mathrm{~Hz}$), $136.0\left(\mathrm{pt}, \mathrm{C}_{6} \mathrm{H}_{4}, J_{\mathrm{CP}}=5.0 \mathrm{~Hz}\right), 143.5$ $\left({ }^{i} \mathrm{C} / \mathrm{C}_{6} \mathrm{H}_{4}\right), 159.9\left({ }^{i} \mathrm{C} / \mathrm{C}_{6} \mathrm{H}_{4}\right), 194.3(\mathrm{CO})$.

4.3. Synthesis of $\mathbf{8 a}$

AgOTf (5) ($46.6 \mathrm{mg}, 0.181 \mathrm{mmol}$) was added in a single portion to $4(178 \mathrm{mg}, 0.181 \mathrm{mmol})$ dissolved in toluene-dichloromethane (ratio $5: 2)(40 \mathrm{~mL})$ at $25^{\circ} \mathrm{C}$. After 30 min of stirring, the reaction mixture was filtered through a pad of Celite. To this solution 7a $(14.0 \mathrm{mg}, 0.090 \mathrm{mmol})$ was added and the resulting suspension was stirred for 30 min . By addition of 50 mL of n-hexane a yellow precipitate formed. The supernatant solution was removed by filtration (canula) and the residue was dried in oil-pump vacuum. Complex 8a was obtained as a yellow solid ($147.1 \mathrm{mg}, 0.065 \mathrm{mmol}$, 75% based on 4).
M.p.: $150{ }^{\circ} \mathrm{C}$ (dec.). Anal. Calc. for $\mathrm{C}_{112} \mathrm{H}_{90} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{~S}_{4} \cdot 0.5$ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2213.38): C, 61.05; H, 4.14; N, 1.27. Found: C, 60.88; H, 4.17; N, 1.36\%. IR (KBr): 3058 (m), 2924 (m), 1706 (s) (v_{CO}), 1608 (s), 1480 (s), 1434 (s), 1395 (sh), 1269 (vs) ($v_{\text {So }}$), 1153 (s), 1098 (s), 1065 (s), 1030 (s) (v_{CF}), 1000 (s), 804 (s), 749 (s), 691 (s), 636 (s), 520 (vs) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=2.4\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 5.29(\mathrm{~s}$, $\left.0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 6.8\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=7.9 \mathrm{~Hz},{ }^{o} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}\right)$, $6.9\left(\mathrm{~m}, 8 \mathrm{H},{ }^{o} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 7.2-7.5(\mathrm{~m}, 68 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}$ and $\left.\left.\mathrm{PPh}_{3}\right), 8.2\left(\mathrm{~m}, 4 \mathrm{H},{ }^{m} \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) .{ }^{31} \mathrm{P}{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=19.7 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR data could not be obtained, due to the low solubility of $\mathbf{8 a}$ in common NMR solvents.

4.4. Synthesis of $\boldsymbol{8 b}$

Compound 4 ($181.3 \mathrm{mg}, 0.184 \mathrm{mmol}$) was dissolved in 40 mL of a toluene-dichloromethane mixture of ratio $5: 2$ and one equivalent of $\operatorname{AgOTf}(4)(47 \mathrm{mg}, 0.184 \mathrm{mmol})$ was added at $25^{\circ} \mathrm{C}$ in a single portion. After 30 min of stirring at this temperature, the reaction mixture was filtered through a pad of Celite. To the eluate, 7b ($19 \mathrm{mg}, 0.092 \mathrm{mmol}$) was added at $25^{\circ} \mathrm{C}$ and the resulting suspension was additionally stirred for 30 min . After appropriate work-up (see synthesis of $\mathbf{8 a}$), complex $\mathbf{8 b}$ could be isolated as a yellow solid ($168 \mathrm{mg}, 0.076 \mathrm{mmol}, 82 \%$ based on 4).
M.p.: $155^{\circ} \mathrm{C}$ (dec.). Anal. Calc. for $\mathrm{C}_{114} \mathrm{H}_{92} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{~S}_{4}$ (2224.96): C, 61.54; H, 4.17; N, 2.52. Found: C, 61.26; H, 4.29; N, 2.58\%. IR (KBr): 3054 (s), 2369 (w), 1703 (s) (v_{CO}), 1609 (m), 1479 (sh), 1476 (s), 1434 (s), 1353 (w), 1266 (vs ($v_{\mathrm{s}(\mathrm{SO})}$), 1224 (sh), 1152 (s), 1095 (s), 1062 (m), 1028 (vs) (v_{CF}), 998 (s), 949 (m), 806 (s), 747 (s), 695 (vs), 636 (vs), 570 (sh), 516 (vs) cm ${ }^{-1}$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=2.4\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.8\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=7.9 \mathrm{~Hz},{ }^{m} \mathrm{H}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}\right), 7.0\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=8.1 \mathrm{~Hz},{ }^{m} \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{N}-\right.$ $\left.\mathrm{N}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 7.2\left(\mathrm{~m}, 8 \mathrm{H},{ }^{\circ} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\right.$ $\left.\mathrm{CH}=\mathrm{N}-\mathrm{N}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), \quad 7.2-7.4 \quad\left(\mathrm{~m}, \quad 68 \mathrm{H}, \quad \mathrm{PPh}_{3}, \quad \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\right.$ $\left.\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}\right), 8.1\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=8.1 \mathrm{~Hz}, \quad{ }^{\circ} \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{N}-\mathrm{N}=\mathrm{CH}-\right.$ $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 8.2\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{N}-\mathrm{N}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=19.7 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=30.4\left(\mathrm{CH}_{3}\right), 127.3$ $\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 127.6\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.6\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 129.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, 130.9, $134.3\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 135.2,137.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 151.9\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 194.5(\mathrm{CO})$.

4.5. Synthesis of $8 \mathbf{c}$

Complex 4 ($157.9 \mathrm{mg}, 0.160 \mathrm{mmol}$) was dissolved in a mixture of toluene-dichloromethane (ratio 5:2) (40 mL) and then one equivalent of $\operatorname{AgOTf}(4)(41.0 \mathrm{mg}, 0.160 \mathrm{mmol})$ was added in a single portion at $25^{\circ} \mathrm{C}$. After stirring this reaction solution for 30 min
it was filtered through a pad of Celite. To the thus obtained eluate, 7 c ($22.8 \mathrm{mg}, 0.080 \mathrm{mmol}$) was added in a single portion at room temperature and the resulting suspension was stirred for additional 30 min . On addition of 50 mL of n-hexane a yellow precipitate formed. The supernatant solution was decanted and the residue was dried in oil-pump vacuum. Complex $\mathbf{8 c}$ was obtained as a yellow solid ($153.0 \mathrm{mg}, 0.067 \mathrm{mmol}, 83 \%$ based on 4).
M.p.: $160{ }^{\circ} \mathrm{C}$ (dec.). Anal. Calc. for $\mathrm{C}_{122} \mathrm{H}_{98} \mathrm{~F}_{6} \mathrm{~N}_{2} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{~S}_{4} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2384.01): C, 61.97; H, 4.23; N, 1.18. Found: C, 62.20; H, 4.28; N, 1.30\%. IR (KBr): 3053 (m), 2922 (w), 1703 (s) (v_{co}), 1606 (s$), 1476$ (m), 1435 (s), 1401 (sh), 1266 (vs) ($v_{\text {so }}$), 1223 (sh), 1152 (s), 1095 (m), 1062 (w), 1029 (s) ($v_{\text {C-F }}$), 998 (m), 965 (sh), 835 (s), 805 (s), 747 (s), 695 (s), 636 (s), 617 (sh), 559 (m), 518 (s) cm ${ }^{-1} .{ }^{1} \mathrm{H}^{\mathrm{H}}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=2.4\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 5.29\left(\mathrm{~s}, 0.5 \mathrm{CH}_{2} \mathrm{Cl}_{2}\right), 6.8\left(\mathrm{~m}, 8 \mathrm{H},{ }^{\circ} \mathrm{H}\right.$, $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3} /{ }^{m} \mathrm{H}, \quad \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$, $7.1\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$, $7.2\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\right.$ $\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$), $7.3-7.4$ (m, $68 \mathrm{H}, \mathrm{PPh}_{3}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}$ -$\left.4-\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}\right), \quad 7.6\left(\mathrm{~s}, \quad 4 \mathrm{H}, \quad \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$, 7.9 (d, $4 \mathrm{H}, J_{\mathrm{HH}}=6.8 \mathrm{~Hz},{ }^{\circ} \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CH}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=19.9$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=30.0$ $\left(\mathrm{CH}_{3}\right), 122.2\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 126.8\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 127.9,128.3\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.7$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 128.8(\mathrm{CH}=\mathrm{CH}), 130.8\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 133.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 133.9,134.3$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 135.1\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 146.2(\mathrm{CH}=\mathrm{CH}), 150.7\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 194.1(\mathrm{CO})$.

4.6. Synthesis of 8d

AgOTf (5) ($39 \mathrm{mg}, 0.153 \mathrm{mmol}$) was added to $\mathbf{4}$ (150.5 mg , 0.153 mmol) dissolved in a mixture of toluene-dichloromethane in the ratio of 5:2 (40 mL) at $25^{\circ} \mathrm{C}$. After 30 min of stirring, the reaction solution was filtered through a pad of Celite. To the eluate, $7 \mathbf{d}(22 \mathrm{mg}, 0.076 \mathrm{mmol})$ was added at $25^{\circ} \mathrm{C}$ and the resulting suspension was stirred for additional 30 min . Addition of 50 mL of $n-$ hexane afforded a yellow precipitate. The solvents were removed by filtration and the yellow residue was dried in oil-pump vacuum. Yield: 142 mg ($0.062 \mathrm{mmol}, 81 \%$ based on 4).
M.p.: $144{ }^{\circ} \mathrm{C}$ (dec.). Anal. Calc. for $\mathrm{C}_{120} \mathrm{H}_{96} \mathrm{~F}_{6} \mathrm{~N}_{4} \mathrm{O}_{8} \mathrm{P}_{4} \mathrm{Pd}_{2} \mathrm{~S}_{4}$ (2301.06): C, 62.64; H, 4.21; N, 2.43. Found: C, 62.40; H, 4.21; N, 2.43\%. IR (KBr): 3054 (m), 2954 (w), 2274 (w), 1705 (s) ($v_{\text {co }}$), 1610 (m), 1575 (sh), 1476 (s), 1435 (s), 1351 (w), 1263 (vs) ($v_{\text {so }}$), 1223 (sh), 1152 (s), 1096 (s), 1060 (m), 1029 (vs) ($v_{\text {CF }}$), 998 (s), 805 (s), 747 (s), 694 (vs), 637 (vs), 616 (s) cm ${ }^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right)$: $\delta=2.4\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3}\right), 6.8\left(\mathrm{~d}, 4 \mathrm{H}, \mathrm{J}_{\mathrm{HH}}=7.9 \mathrm{~Hz},{ }^{m} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\right.$ $\left.\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}\right), 7.0\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=7.5 \mathrm{~Hz},{ }^{0} \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}\right)$, 7.2 (m, 4H, ${ }^{m} \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CN}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$), 7.3-7.6 (m, $\left.68 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{C}_{6} \mathrm{H}_{4}-4-\mathrm{SC}(\mathrm{O}) \mathrm{CH}_{3}, \mathrm{PPh}_{3}\right), 8.1\left(\mathrm{~d}, 4 \mathrm{H}, J_{\mathrm{HH}}=5.9 \mathrm{~Hz},{ }^{\circ} \mathrm{H}\right.$, $\left.\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CN}-\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 8.2\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}-\mathrm{CH}=\mathrm{CN}-\right.$ $\left.\mathrm{C}_{6} \mathrm{H}_{4}-\mathrm{CN}=\mathrm{CH}-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta=19.8 .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta=30.2\left(\mathrm{CH}_{3}\right), 122.7\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right), 127.1\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 128.3$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.9,129.0\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 129.1,131.1\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 133.7,134.1$ $\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 134.9\left(\mathrm{C}_{6} \mathrm{H}_{4}\right), 151.7\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}\right)$, $194.3(\mathrm{CO})$.

5. X-ray structure determination

The structures of $\mathbf{4}$ and $\mathbf{8 c}$ in the solid state were determined from single-crystal X-ray diffraction. For data collection a Bruker Smart 1 K CCD diffractometer with graphite monochromatized Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$) was used. Crystallographic data of $\mathbf{4}$ and $\mathbf{8 c}$ are given in Table 4. Data collection and cell determination has been done with the program Smart [36,37]. For data integration and refinement of the unit cells the program saint was used. [37] The space groups were determined using the program xprep [37] and the absorption has been corrected semi-empirically with sADABS [38]. The structures were solved by direct methods with the program shelx-97 and structure refinement was based on leastsquare based F^{2} using shelx-97 [39]. All non-hydrogen atoms were
fully refined anisotropically in their local positions. The hydrogen atom positions have been refined with a riding model. In 4 the half occupied dichloromethane solvent molecule and the thioacetate substituent are disordered and have been refined to split occupancies of $0.35 / 0.65\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ and $0.71 / 0.29(\mathrm{O} 1, \mathrm{C} 50)$. In $\mathbf{8 c}$ the triflate ion and the phenylenethioacetate unit are disordered and have been refined to split occupancies of $0.77 / 0.23\left(\mathrm{O}_{3} \mathrm{SCF}_{3}\right)$ and 0.50 / 0.50 (C7-C14, O1, S1).

Supplementary material

CCDC 679544 and 679545 contains the supplementary crystallographic data for $\mathbf{4}$ and $\mathbf{8 c}$. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie for financial support. We are grateful to Dr. S. Vatsadze, Moscow State University, Moscow (Russia) for a generous gift of the pyridyl-based connecting species.

References

[1] (a) A. Aviram, M. Ratner, Molecular Electronics: Science and Technology, The New Academy of Science, New York, 1998;
(b) R.E. Martin, F. Diederich, Angew. Chem., Int. Ed. Engl. 38 (1999) 1350;
(c) H.W. Lin, H. Wang, X.J. Zhao, L.F.S. Wang, Synthetic Met. 135-136 (2003) 239.
[2] (a) J.M. Tour, Acc. Chem. Res. 33 (2000) 791. and references therein.;
(b) D. Astruc, Acc. Chem. Res. 30 (1997) 383;
(c) J.P. Launay, Chem. Soc. Rev. 30 (2001) 386;
(d) M.D. Ward, Chem. Soc. Rev. 24 (1995) 121;
(e) M.D. Ward, Chem. Ind. 15 (1996) 568;
(f) J.A. McClecverty, M.D. Ward, Acc. Chem. Res. 31 (1998) 842;
(g) J.M. Tour, Chem. Rev. 96 (1996) 537.
[3] (a) S.P. Dudek, H.D. Sikes, C.E.D. Chidsey, J. Am. Chem. Soc. 123 (2001) 8033; (b) C.J. Yu, Y. Chong, J.F. Kayyem, M. Gozin, J. Org. Chem. 64 (1999) 2070; (c) C. Hortholary, C. Coudret, J. Org. Chem. 68 (2003) 2167;
(d) W. Skibar, H. Kopacka, K. Wurst, C. Salzmann, K.H. Ongania, F.F. de Biani, P. Zanello, B. Bildstein, Organometallics 23 (2004) 1024.
[4] (a) D.R. Jung, A.W. Czanderna, Crit. Rev. Solid State Mater. Sci. 19 (1994) 1; (b) G.C. Herdt, D.R. Jung, A.W. Czanderna, Prog. Surf. Sci. 50 (1995) 103; (c) M.J. Tarlov, Langmuir 8 (1992) 80;
(d) T. Ohgi, H.Y. Sheng, Z.C. Dong, H. Nejoh, Surf. Sci. 442 (1999) 277;
(e) T. Ohgi, D. Fujita, Z.C. Dong, H. Nejoh, Surf. Sci. 493 (2001) 453;
(f) G.L. Fisher, A.E. Hooper, R.L. Opila, D.L. Allara, N. Winograd, J. Phys. Chem. B 104 (2000) 3267;
(g) K. Konstadinidis, P. Zhang, R.L. Opila, D.L. Allara, Surf. Sci. 338 (1995) 300; (h) A.E. Hooper, G.L. Fisher, K. Konstadinidis, D. Jung, H. Nguyen, R.L. Opila, R.W. Collins, N. Winograd, D.L. Allara, J. Am. Chem. Soc. 121 (1999) 8052; (i) G.L. Fisher, A.V. Walker, A.E. Hooper, T.B. Tighe, K.B. Bahnck, H.T. Skriba, M.D. Reinard, B.C. Haynie, R.L. Opila, N. Winograd, D.L. Allara, J. Am. Chem. Soc. 124 (2002) 5528;
(j) S.R. Carlo, A.J. Wagner, D.H. Fairbrother, Phys. Chem. B 104 (2000) 6633.
[5] (a) A.K. Mahapatro, J. Ying, T. Ren, D.B. Janes, Nano Lett. 8 (2008) 2131;
(b) X. Lu, M. Li, C. Yang, L. Zhang, Y. Li, L. Jiang, H. Li, L. Jiang, C. Liu, W. Hu, Langmuir 22 (2006) 3035;
(c) V. Burtman, A.S. Ndobe, Z.V. Vardeny, J. Appl. Phys. 98 (2005) 034314;
(d) F. von Wrochem, F. Scholz, A. Schreiber, H.-G. Nothofer, W.E. Ford, P. Morf, T. Jung, A. Yasuda, J.M. Wessels, Langmuir 24 (2008) 6910.
[6] S. Maisch, F. Buckel, F. Effenberger, J. Am. Chem. Soc. 127 (2005) 17315.
[7] S.Y. Zhou, D.A. Siegel, A.V. Fedorov, A. Lanzara1, Phys. Rev. Lett. 101 (2008) 086402.
[8] (a) H. Sakaguchi, H. Nakamura, T. Nagamura, T. Ogawa, T. Matsuo, Chem. Lett. (1989) 1715;
(b) T. Nagamura, H. Sakaguchi, T. Matsuo, Thin Solid Films 210/211 (1992) 162;
(c) T. Nakano, Y. Yamada, T. Matsuo, S. Yamada, J. Phys. Chem. B 102 (1998) 8569;
(d) V.W.W. Yam, Y. Yang, H.P. Yang, K.K. Cheung, Organometallics 18 (1999) 5252;
(e) B.W.K. Chu, V.W.W. Yam, Inorg. Chem. 40 (2001) 3324.
[9] (a) I. Willner, V. Helegshabtai, R. Blonder, E. Katz, G.L. Tao, J. Am. Chem. Soc. 118 (1996) 10321;
(b) L.A. Bumm, J.J. Arnold, M.T. Cygan, T.D. Dunbar, T.P. Burgin, L. Jones, D.L. Allara, J.M. Tour, P.S. Weiss, Science 271 (1996) 1705;
(c) S.P. Dudek, H. Sikes, C.E.D. Chidsey, J. Am. Chem. Soc. 123 (2001) 8033;
(d) W.D. Price, J.M. Tour, Tetrahedron 59 (2003) 3131;
(e) A. Shaporenko, M. Brunnbauer, A. Terfort, L.S.O. Johansson, M. Grunze, M. Zharnikov, Langmuir 21 (2005) 4370;
(f) A. Shaporenko, K. Rößler, H. Lang, M. Zharnikov, J. Phys. Chem. B 110 (2006) 24621;
(g) P.D. Beer, P.A. Gale, Angew. Chem., Int. Ed. Engl. 40 (2001) 486;
(h) F.A. Cotton, C. Lin, C. Murillo, Acc. Chem. Res. 34 (2001) 759;
(i) J.M. Tour, L. Jones II, D.L. Pearson, J.J.S. Lamba, T.P. Burgin, G.M. Whitesides, D.L. Allara, J.A.N. Parikh, S.V. Atre, J. Am. Chem. Soc. 117 (1995) 9529;
(j) E.A. Weiss, R.C. Chiechi, G.K. Kaufman, J.K. Kriebel, Z. Li, M. Duati, M.A. Rampi, G.M. Whitesides, J. Am. Chem. Soc. 129 (2007) 4336.
[10] (a) F. Paul, C. Lapinte, Coord. Chem. Rev. 178-180 (1998) 427;
(b) H. Lang, Angew. Chem., Int. Ed. Engl. 33 (1994) 547;
(c) U.H.F. Bunz, Angew. Chem., Int. Ed. Engl. 35 (1996) 969;
(d) M.D. Ward, Chem. Ind. (1997) 640;
(e) T.M. Swager, Acc. Chem. Res. 31 (1998) 201;
(f) N. Le Narvor, C. Lapinte, J. Chem. Soc., Chem. Commun. (1993) 357;
(g) U. Böhme, C. Vogel, J. Meier-Haack, U. Scheler, J. Phys. Chem. B 111 (2007) 8344;
(h) N. Sakai, A.L. Sisson, T. Bürgi, S. Matile, J. Am. Chem. Soc. 129 (2007) 15758; (i) A. Perez-Velasco, V. Gorteau, S. Matile, Angew. Chem., Int. Ed. Engl. 47 (2008) 921;
(j) M.I. Bruce, K. Costuas, T. Davin, J.-F. Halet, K.A. Kramarczuk, P.J. Low, B.K. Nicholson, G.J. Perkins, R.L. Roberts, B.W. Skelton, M.E. Smith, A.H. White, Dalton Trans. (2007) 5387;
(k) R.L. Cordiner, M.E. Smith, A.S. Batsanov, D. Albesa-Jové, F. Hartl, J. A.K. Howard, P.J. Low, Inorg. Chim. Acta 359 (2006) 946;
(1) M.I. Bruce, K. Costuas, B.G. Ellis, J.-F. Halet, P.J. Low, B. Moubaraki, K.S. Murray, N. Ouddai, G.J. Perkins, B.W. Skelton, A.H. White, Organometallics 26 (2007) 3735 ;
(m) M.I. Bruce, P.J. Low, F. Hartl, P.A. Humphrey, F. de Montigny, M. Jevric, C. Lapinte, G.J. Perkins, R.L. Roberts, B.W. Skelton, A.H. White, Organometallics 24 (2005) 5241;
(n) M.A. Fox, R.L. Roberts, T.E. Baines, B. Le Guennic, J.-F. Halet, F. Hartl, D.S. Yufit, D. Albesa-Jové, J.A.K. Howard, P.J. Low, J. Am. Chem. Soc. 130 (2008) 3566;
(o) N.J. Brown, P.K. Eckert, M.A. Fox, D.S. Yufit, J.A.K. Howard, P.J. Low, Dalton Trans. (2008) 433;
(p) M.I. Bruce, P.A. Humphrey, M. Jevric, B.W. Skelton, A.H. White, J. Organomet. Chem. 692 (2007) 2564;
(q) B. Kim, J.M. Beebe, C. Olivier, S. Rigaut, D. Touchard, J.G. Kushmerick, X.-Y. Zhu, C.D. Frisbie, J. Phys. Chem. C 111 (2007) 7521;
(r) C. Olivier, B. Kim, D. Touchard, S. Rigaut, Organometallics 27 (2008) 509;
(s) L. de Quadras, F. Hampel, J.A. Gladysz, Dalton Trans. (2006) 2929;
(t) C. Olivier, S. Choua, P. Turek, D. Touchard, S. Rigaut, Chem. Commun. (2007) 3100;
(u) S.R. Bull, L.C. Palmer, N.J. Fry, M.A. Greenfield, B.W. Messmore, T.J. Meade, S.I. Stupp, J. Am. Chem. Soc. 130 (2008) 2742.
[11] (a) K. Döring, D. Taher, B. Walfort, M. Lutz, A.L. Spek, G.P.M. van Klink, Gerard van Koten, H. Lang, Inorg. Chim. Acta 361 (2008) 2731;
(b) H. Lang, K. Rößler, D. Taher, R. Holze, B. Walfort, Inorg. Chim. Acta 361 (2008) 1659.
[12] D. Taher, B. Walfort, H. Lang, Inorg. Chim. Acta 359 (2006) 1899.
[13] (a) G. Socrates (Ed.), Infrared Characteristic Group Frequencies, John Wiley and Sons, Inc., New York, 1980, p. 7;
(b) A. Maiboroda, G. Rheinwald, H. Lang, Inorg. Chem. 39 (2000) 5725;
(c) A. Maiboroda, A. Fechner, D. Zahn, M. Hietschold, H. Lang, Sensor. Actuat. B Chem. Sensor. 75 (2001) 188;
(d) A. Maiboroda, H. Lang, New J. Chem. 25 (2001) 642;
(e) A. Maiboroda, G. Rheinwald, H. Lang, Inorg. Chem. Commun. 4 (2001) 381;
(f) A. Maiboroda, G. Rheinwald, H. Lang, Eur. J. Inorg. Chem. (2001) 2263;
(g) A. Maiboroda, G. Rheinwald, H. Lang, Inorg. Chim. Acta 304 (2000) 122.
[14] M.M. Crutchfield, C.H. Dungan, J.H. Letcher, V. Mark, J.R. van Wazer, Top. Phosphorus Chem. 5 (1963) 1.
[15] (a) Y. Song, J.J. Vittal, H. Soh, P.H. Leung, Organometallics 18 (1999) 650;
(b) K. Sakai, H. Kitagawas, T. Mitani, M. Yamashita, Chem. Lett. (1997) 1237;
(c) P. Dapporto, L. Sacconi, P. Stoppioni, F. Zanobini, Inorg. Chem. 20 (1981) 3834;
(d) K.R. Reddy, W.W. Tasai, K. Surekha, G.H. Lee, J. Shie-Ming, J. Ting, S.T. Liu, J. Chem. Soc., Dalton Trans. (2002) 1776;
(e) F.H. Allen, Acta Crystallogr. B 58 (2002) 380;
(f) J. Campora, J.A.P. Palma, P. Valerga, E. Spillner, Angew. Chem., Int. Ed. Engl. 38 (1999) 147.
[16] (a) F.R. Hartley, Organomet. Chem. Rev. A 6 (1970) 119;
(b) E. van der Voort, P. van der Sluis, A.L. Spek, Acta Crystallogr. C 43 (1987) 461.
[17] (a) J. Vicente, J.A. Abad, A.D. Frankland, M.C. Ramírez der Arellano, Chem. Eur. J. 5 (1995) 3066;
(b) J.P. Flemming, M.C. Pilon, O.Y. Borbulevitch, M.Y. Antipin, V.V. Grushin, Inorg. Chim. Acta 280 (1998) 87;
(c) P. Veya, C. Floriani, A. Chiesivilla, C. Rizzoli, Organometallics 12 (1993) 4899;
(d) J. Vicent, J.A. Abad, B. Rink, F.S. Hernández, M.C. Ramírezde Arellano, Organometallics 16 (1997) 5269;
(e) B. Crociani, M. Sala, A. Polo, G. Bombieri, Organometallics 5 (1986) 1369;
(f) F. Ozawa, M. Sugawara, K. Hasebe, T. Hayashi, Inorg. Chim. Acta 296 (1999) 19;
(g) F. Benetollo, G. Bombieri, F. Dibianca, B. Crociani, Inorg. Chim. Acta 188 (1991) 51.
[18] (a) J. Trotter, Acta Crystallogr. 14 (1961) 1135;
(b) G.P. Charbonneau, Y. Delugeard, Acta Crystallogr. B 33 (1977) 1586;
(c) G. Casalone, A. Gavezzotti, M. Simonetta, J. Chem. Soc., Perkin Trans. (1973) 342;
(d) E. Boonstra, Acta Crystallogr. 16 (1963) 816;
(e) G. Casalone, C. Mariana, A. Mugnoli, M. Simonetta, Acta Crystallogr. B 25 (1969) 1741;
(f) M.S. Farag, N.A. Kader, J. Chem. U. A. R. 3 (1960) 1;
(g) J. Manna, C.J. Kuehl, J.A. Whiteford, P.J. Stang, Organometallics 16 (1997) 1897;
(h) M.O. Sinnokrot, E.F. Valeev, C.D. Sherril, J. Am. Chem. Soc. 124 (2002) 10887.
[19] For an introductory overview see: A. Jutand, Chem. Rev. 108 (2008) 2300.
[20] K. Rößler, Diploma Thesis, Chemnitz, 2005.
[21] K. Rößler, T. Rüffer, B. Walfort, R. Packheiser, R. Holze, M. Zharnikov, H. Lang, J. Organomet. Chem. 692 (2007) 1530.
[22] T. Weidner, K. Rössler, P. Ecorchard, H. Lang, M. Grunze, M. Zharnikov, J. Electroanal. Chem. 621 (2008) 159.
[23] B. de Boer, H. Meng, D.F. Perepichka, J. Zheng, M.M. Frank, Y.J. Chabal, Z. Bao, Langmuir 19 (2003) 4272. For 4-iodo-4-thioacetylbiphenyl studied in this work the oxidation potential of value observed for the value $E_{\mathrm{ox}}=1.53 \mathrm{~V}$ has been reported vs. a silver/silver chloride electrode without conversion into the ferrocene scale. Tentative conversion based on data reported by Noviandri et al. yields a converted value $E_{o x, \text { FeC }}=1.01 \mathrm{~V}$ being significantly different from the other values discussed here. This value is indeed close to the value of $E_{\text {ox, Fec }}=1.16 \mathrm{~V}$ as reported before in Ref. [20]..
[24] T.D. Lash, D.A. Colby, S.R. Grahamur, G.M. Ferrence, L.F. Szczepura, Inorg. Chem. 42 (2003) 7326.
[25] A.L. Seligson, W.C. Trogler, J. Am. Chem. Soc. 114 (1992) 7085.
[26] C. Amatore, M. Azzabi, A. Jutand, J. Am. Chem. Soc. 113 (1991) 8375.
[27] J. Campora, P. Palma, D. del Río, J.A. López, E. Alvarez, Organometallics 24 (2005) 3624.
[28] S.H. Toma, M. Uemi, S. Nikolaou, D.M. Tomazela, M.N. Eberlin, H.E. Toma, Inorg. Chem. 43 (2004) 3521.
[29] W. Kaim, B. Schwederski, A. Dogan, J. Fiedler, C.J. Kuehl, P. Stang, Inorg. Chem. 41 (2002) 4025.
[30] (a) S. Vatsadze, M. Al-Anber, W.R. Thiel, H. Lang, R. Holze, J. Solid State Electrochem. 9 (2005) 764;
(b) S. Vatsadze, M. Al-Anber, R. Holze, W.R. Thiel, H. Lang, J. Chem. Soc., Dalton Trans. (2005) 3632;
(c) S. Vatsadze, M. Al-Anber, R. Holze, W. Thiel, H. Lang, Electrochemical studies and semiempirical calculations on π-conjugated dienones and related compounds, in: J. Lessard, P. Hapiot, I. Nishiguchi (Eds.), Proceedings of the Sixth International M. Baizer Award Symposium in Honor of Dennis H. Evans and Masao Tokuda - Analytical Mechanistic and Synthetic Organic Electrochemistry, The Electrochemical Society, PV 2004-10, vol. 197, Pennington, USA, 2004.
[31] (a) H. Jude, J.K.B. Bauer, W.B. Connick, Inorg. Chem. 43 (2004) 725;
(b) H. Jude, J.K.B. Bauer, W.B. Connick, Inorg. Chem. 41 (2002) 2275.
[32] T. Moriuchi, S. Bandoh, M. Kamikawa, T. Hirao, Chem. Lett. (2000) 148.
[33] A conversion of given electrode potentials to the standard normal hydrogen electrode scale is possible: H. Strehlow, W. Knoche, H. Schneider, Ber. Bunsenges. Phys. Chem. 77 (1973) 760.
[34] G. Gritzner, J. Kuta, Pure Appl. Chem. 56 (1984) 461.
[35] S. Komiya, Synthesis of Organometallic Compounds, Wiley, Chichester, UK, 1997.
[36] D. Stalke, Chem. Soc. Rev. 27 (1998) 171.
[37] Bruker AXS Inc., Madison, WI, USA, 1998.
[38] G.M. Sheldrick, sADABS V2.01, Program for Empirical Absorption Correction of Area Detection Data, University of Göttingen, Germany, 2000.
[39] (a) G.M. Sheldrick, Acta Crystallogr. Sect. A 46 (1990) 467 ;
[b] G.M. Sheldrick, shelxs 97, Program for Crystal Structure Refinement, University of Göttingen, Germany, 1997.

[^0]: * Corresponding author. Tel.: +49 371531 21210; fax: +49 37153121219.

 E-mail address: heinrich.lang@chemie.tu-chemnitz.de (H. Lang).

[^1]: ${ }^{\text {a }}$ Based on 4.

[^2]: ${ }^{\text {a }}$ The estimated standard deviation(s) of the last significant digit(s) are shown in parentheses.

[^3]: ${ }^{\text {a }}$ Experiments were performed in THF, this explains in part the electrode potential differences.

[^4]: ${ }^{1}$ In the original report a saturated calomel electrode was used, as a reference the redox process of $\left[\mathrm{Fe}(\mathrm{II}) /(\mathrm{III})\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}(\mathrm{COMe})\right)_{2}\right]$ was used. The potential range given here refers to this redox system, its formal potential may slightly differ from that of the ferrocene/ferrocenium system used throughout this work.

